HYDRODYNAMICS AND HEAT EXCHANGE IN
TURBULENT MOMENTUMLESS WAKES

V. K. Shashmin UDC 532.517.4:536.24

On the basis of the Reynolds equations in the approximation of the boundary layer, the article
obtains the similarity solutions for the axisymmetric wake of a body with a hydrodynamic pro-
pulsion agent.

A theoretical analysis of the turbulent wakes of bodies with a hydrodynamic propulsion agent was car-
ried out in {1], and the regularities of attenuation of the axial velocity were obtained on the assumption that
the difference of the normal stresses is small. Experimental investigations [2-8] showed that the magnitude
of the normal stresses plays an important part in such flows, Procedures for numerical calculation were
suggested [9-12] yielding results compatible with the experimental results. The authors of [2, 9, 13-16] pro-
vided a theoretical analysis of the examined flow from different positions. The similarity solutions with one
scale function of the length and different amplitude functions for different magnitudes were analyzed in detail
n [16].

Below we obtain the similarity solutions for the distribution of the mean velocity over the sections of
the wake and of single-point second-order momenta for velocity pulsations. We obtain the similarity laws
of attenuation of the scalar magnitudes and their correlations with the velocity pulsations, and also the dis-
tributions of these magnitudes over the sections of the wake.

In a system of cylindrical coordinates, the equations describing turbulent flow behind a self-propelled
body, the diffusion of temperature perturbations, in the approximation of the boundary layer, and the conti-
nuity equations are written as follows:
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For closing the obtained system, we write the equations for the second-order correlation momenta,
written in the approximation of the boundary layer:
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It was shown in [16] that for the given problem there exist similarify variables

X=x n=ocrx". (12)

The similarity indicator p is not determined either from the integral condition (11) or from Egs. (1)-(9), i.e.,
for determining p we have to have recourse to experimental investigations or other theoretical considerations.
Using the similarity variables of (12), we write the flow function ¥ introduced in accordance with the continuity
equation (3), the normal stress Ry;-R,,, the tangential stress R;,, and the turbulent energy E in the form of
series with decreasing powers of X:
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The system of equations (1)~(9) is open. To close it, various models [17] were suggested. We use fhe
simplest of the possible ways of second-order closure:
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We presume that the macrogcale A is proportional to the width of the wake:

A = bX?. (15)
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Fig. 1. Distribution: a) of normal stress (1) and of
turbulent enexrgy (2) over the section of the jet; b) of
the velocity over the section of the jet.

If we substitute expressions (13) and (14) into the corresponding equations of the system (1)-(9) and equate
the coefficients of equal powers of X, we obtain a system of ordinary differential equations which can be solved

numerically. To simplify the obtained system, we introduce the turbulent viscosity &p and consider it constant
across the flow:
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Then, taking (16) into account, the equations for the similarity functions f;, ¢,, g, assume the form
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By the substitution 7y = "anz/ 2, the homogeneous equations of system (17) are reduced to confluent
hypergeometric equations [18]. The solution of the third equation of system (17) is written via the confluent
hypergeometric functions [18]:
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Only the function & satisfies the boundary conditions (10). The experimental investigations [2-8] show that the
profile of turbulent energy is well approximated by an exponential function, and therefore, without loss of

generality, we may state that the expression —1 — (c¢; — b)bp is equal to unity on account of the selection of the

constant c;. Then expression (18) is rewritten as follows:
o= Ene™ "2, (19)

We substitute (19) into the second equation of system (17) and put the value of the expression (b — c3)/ bp—1=
0.5 by suitably choosing the constant cg, and we write the solution satisfying the boundary conditions (10):
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The constant B; determines the amplitude of the normal stress on the axis of the wake. For the sake of sim-
plification it was adopted in [15] that the profile of the normal stresses has the same form as the profile of
the turbulent energy. Figure la shows the similarity distribution of turbulent energy (19) and of normal stress

(20) over the section of the wake. It can be seen from the figure that the profile of the normal stresses has a
flatter peak at the center of the wake than the profile of turbulent energy.

For the first equation of system (17), the general solution satisfying the boundary conditions (10) and
the integral condition (11) is written as follows:

o ( 1 1 ) /2 N b i n
=BD|——1,1, ——ac,?] +¢€ 2:*_ ——acm?)
" 2 o ) 2" & ( oLm)

440



L e S - 27 |

4t — R
z or MAT . m“’/{’:‘?

g6 & .M i)_]

" g w2 0 %/7 Pig 2. Change of the width of the wake
VE/too (a) and distribution of the turbulent ener-
49/ gy and of the mean velocity along the
axis of the wake (b): 1) experimental data
of [2]; 2) of [3]; 3) of [4]; 4) of [5]; 5) of
[6]; 6) of [7]; 7) of [8].

o2 \"‘ 9004
- Jot Lt X i b)
4, V4 00 x/D
by = B, <_i__ 1 ) , by——B /L+L__L) B L
p \ Cy ) Cop 3ep 20, 2p
(21)
I bem (2P02—02+P___1,.>~__b£~_2_. _L< |+ _1_) +
n! (n—D! Copn® n n2(n—2)! 2 2

16 1\ (a— 2 (14 p—3p(n— 1)
— F (— D" 2 , n>=3.

T3 (=1 <02 ) n2(2n — 2)! =

The constant B, determines the value of the maximum of the velocity on the axis of the wake. The integral
condition (10) is satisfied for any values of By, By, Experimental measurements [2-7] of velocity attenuation
-on the axis of the wake yield the value p = 1/4, then the longitudinal velocity is
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i.e., the correction in the nonsimilarity term in the resolution of the velocity is small compared with the
similarity solution. It can be seen from formula (21) that the scale of the transverse coordinate n for the
velocity is proportiopal to cye/2 in distinction to the scale n for the turbulent energy and normal stress,
where it is proportional to o/2. Figure 1b shows that in dependence on the ratio of the constants in (21), in
the wake of a self-propelled body two kinds of distribution of axial velocity may be realized. In Fig. 2a the
results of the calculations of the theoretical change of the width of the wake «ebXP for p = 1/4 {solid straight
line) are being compared with the available experimental data. The authors of [4, 5] studied the wake of an os-
cillating screen. Figure 2b presents the experimental data on the change of the maximum of turbulent energy
and of the maximum of the averaged velocity along the axis of the wake; the solid line corresponds to the theo~
retical solution (p = 1/4).

Let us examine the thermal wake. From the system of equations (1)-(9) and the integral condition (10)
we obtain the following similarity laws:
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If we substitute the expansions (23) into (1)-(9), we obtain the system of ordinary differential equations
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Integrating the first equation of system (24), we obtain the explicit dependence of the profile of averaged tem-
perature on the correlation <v'8>:
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If we express function d; from (24) and substitute it into the second and third equations of system (24), we
obtain ordinary differential equations for ¢, and ¢, which can be solved numerically.

We will examine the solution of system (24) on the basis of the model for the coefficient of effective
turbulent thermal diffusion ¥ 7w YAE!/2, considering it constant across the wake:
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In accordance with (25) we obtain the following differential equation for the function d;:
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The solution of this equation is
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where the constant Ty, is determined from the integral condition (11). We substitute expression (28) into the
right-hand side of the third equation of system (24):
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The general solution of Eq. (29) satisfying the boundary conditions (10) is expressed through the confluent
hypergeometric functions [18]:
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For p = 1/4 we obtain that the attenuation rate of the averaged temperature is proportional to x1/2 (for the
averaged speed C0){"3/ %), i.e., the scalar magnitudes in the wake of the propulsion agent degenerate much
more slowly than the vectorial ones. For the attenuation of velocity and temperature pulsations E < X‘3/ 2,
<02> X1 ie., the energy of turbulence fades much more quickly than the square of the temperature pul-
sations. The longitudinal correlation <u'6> is proportional to X% and does not depend on the indicator p.
The degeneration of the transverse correlation <v'6> is proportional to Xx-%4, i.e., considerably slower than
the longitudinal correlation <u'é>.

NOTATION

x, T, cylindrical coordinates; u=, speed of the propelling agent; u, v, averaged longitudinal and trans-
verse speed, respectively, in the wake; uy, excess velocity in the wake; T, averaged excess temperature in
the wake; v, kinematic viscosity; a, thermal diffusivity; Rijz = <ui'uj2'> , correlation of velocity pulsations
i,j=1,2,3, u' ~u, w~v,u ~ w'); B = <u'§> +<u'y> +<u'y >, turbulent energy; p', pressure pul-
gation; p, density; 6, temperature pulsation; €, o, ¢, C3, C3, Sy, Sy, 83, b, empirical constants; r*, dis-
tance from the axis of the wake where the velocity is equal to half the maximum in the given section.
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HEAT EXCHANGE IN ANNULAR CHANNEL
WITH INTERMEDIATE HEAT CARRIER

V. A. Dement'ev UDC 66.047

The article explains the results of the experimental investigation of heat exchange in an annu-
lar channel with an intermediate heat carrier. A comparison is presented with coaxial cylin-
ders rotating in the same direction. The experimental devices are described.

A characteristic feature of all structures for drying sheet material on drums is the possibility of heat
transfer from a primary heat carrier with elevated pressure and temperature to the material through inter-
mediate heat carriers making it possible, without greatly raising the pressure in the drum cavity, substan-
tially to increase the temperature of the drum surface, and thus to intensify the drying process. As inter-
mediate heat carriers various high-temperature (organic and inorganic) liquids are suggested which have
low vapor pressure at high temperature. At the Kaliningrad Branch of the Central Research, Project, and
Design Institute for Planning Equipment of the Pulp and Paper Industry (TsNIIbummash) also a number of
designs were suggested where heat transfer is effected from an inner (moving or fixed) cylindrical jacket,
consisting of annular pipes and being heated by highly superheated steam, to the outer shell of the drying
drum through an intermediate heat carrier that fills the closed annular space (chamnel) between the tubular
jacket and the outer drum shell.

Inside the drying drum, heat exchange using an intermediate heat carrier proceeds similarly to heat
exchange in the annular channels of coaxial cylinders where the gap between them is filled with a heat carrier
that does not move axially, and the heat is transferred from the inner cylinder to the outer cooling cylinder
by a heat carrier filling the space between them [1-18].

Kaliningrad Branch of the Central Research, Project, and Design Institute for Planning Equipment of
the Pulp and Paper Industry. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 4, pp. 647-651,
April, 1983. Original article submitted December 30, 1981.
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